Loss of functional A-type potassium channels in the dendrites of CA1 pyramidal neurons from a mouse model of fragile X syndrome.
نویسندگان
چکیده
Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K(+) currents (I(KA)) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of I(KA) using cell-attached patch-clamp recordings revealed that there was significantly less I(KA) in the dendrites of CA1 neurons from fmr1-/y mice. Interestingly, the midpoint of activation for A-type K(+) channels was hyperpolarized for fmr1-/y neurons compared with wild-type, which might partially compensate for the lower current density. Because of the rapid time course for recovery from steady-state inactivation, the dendritic A-type K(+) current in CA1 neurons from both wild-type and fmr1-/y mice is likely mediated by K(V)4 containing channels. The net effect of the differences in I(KA) was that back-propagating action potentials had larger amplitudes producing greater calcium influx in the distal dendrites of fmr1-/y neurons. Furthermore, CA1 pyramidal neurons from fmr1-/y mice had a lower threshold for LTP induction. These data suggest that loss of I(KA) in hippocampal neurons may contribute to dendritic pathophysiology in Fragile X syndrome.
منابع مشابه
Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model
Fragile X syndrome (FXS) is a genetic disorder due to the silencing of the Fmr1 gene, causing intellectual disability, seizures, hyperactivity, and social anxiety. All these symptoms result from the loss of expression of the RNA binding protein fragile X mental retardation protein (FMRP), which alters the neurodevelopmental program to abnormal wiring of specific circuits. Aberrant mRNAs transla...
متن کاملCell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome.
Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence ...
متن کاملUiversity of California Santa Cruz Dendritic Spine Abnormalities in a Mouse Model of Fragile X Syndrome
........................................................................................vii Dedication......................................................................................viii Acknowledgements............................................................................ix Chapter 1: Introduction.......................................................................1 1.1 Backgroun...
متن کاملION CHANNELS Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons
The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayedrectifier K channel in shaping the dendritic action pote...
متن کاملImpaired Memory and Evidence of Histopathology in CA1 Pyramidal Neurons through Injection of Aβ1-42 Peptides into the Frontal Cortices of Rat
Introduction: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which has much benefited from animal models to find the basics of its pathophysiology. In our previous work (Haghani, Shabani, Javan, Motamedi, & Janahmadi, 2012), a non-transgenic rat model of AD was used in electrophysiological studies. However, we did not investigate the histological aspects in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 50 شماره
صفحات -
تاریخ انتشار 2013